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X-Ray Intensity Fluctuation Spectroscopy Studies on Phase-Ordering Systems
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The order-disorder phase transition in Cu3Au has been studied by x-ray intensity fluctuation spectros-
copy. Following a quench from the high-temperature, disordered phase, the ordering kinetics is well
described by a universal scaling form that can be measured by time-resolved (incoherent) x-ray scattering.
By using coherent scattering, we have measured the fluctuations about this universal scaling form. In the
late stages of the ordering process, these fluctuations give a two-time correlation function C�q; t1; t2�
which has a scaling form with natural variables �t � jt1 � t2j and t � �t1�t2�

2 . The scaling form crosses
over from linear in t to t1=2. These present the first such results for a nonconserved system.
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FIG. 1 (color online). Time evolution of the [100] superlattice
peak after a quench from 425 to 370 	C.
The development of long range order out of a disordered
system is a well-known and well studied class of nonequi-
librium processes. The time evolution of the order is char-
acterized by one length scale [e.g., an average domain size,
R�t�] and looks invariant in time when the system is scaled
by this characteristic length. The time dependence can
often be described by a power law: R�t� / tn. This scaling
hypothesis has been found to describe correctly the time
evolution of a large class of systems and to be independent
of many microscopic details of the system. For example,
for first-order phase transitions with a nonconserved order
parameter, often called model A [1], the growth exponent
is found to be n � 1=2 while n � 1=3 for conserved
systems, also called model B. Dynamical scaling appears
to well describe the average behavior of these nonequilib-
rium systems. A natural question then arises as to whether
dynamical scaling will also describe fluctuations about this
average behavior.

X-ray intensity fluctuation spectroscopy (XIFS) is an
ideal way to perform direct measurements of the dynamics
of fluctuations in condensed matter systems at atomic
length scales. Over the past few years, XIFS has been
used to study the equilibrium dynamics in a large number
of hard- and soft-condensed matter systems [2]. However,
there were many fewer attempts to extend XIFS and study
nonequilibrium dynamics. The use of two-time correlation
functions as proposed in [3,4], to study the dynamics of
fluctuations, has proven to be useful in studies of phase
separation experiments (model B) [5,6]. This Letter
presents the first measurements of two-time correlation
functions and their temperature dependence in systems
undergoing first-order phase transition with nonconserved
order parameter (model A).

The Cu3Au alloy is a real workhorse for studies on phase
transitions [7]. At high temperatures, the alloy has a fcc
lattice with each site randomly occupied by either a Cu or
Au atom. Below the critical temperature Tc � 383 	C the
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system develops a L12 ordered structure. The Au atoms
occupy the corners of a conventional unit cell while the Cu
atoms place themselves at the face sites. However, since
the ‘‘corner’’ can be chosen in four different ways, the
ground state is fourfold degenerate [7–9]. Ordered do-
mains in different ground states are separated by antiphase
domain walls. Because of the complex domain structure,
the superlattice reflections from Cu3Au are not isotropic
(see Fig. 1). Low-energy, in-plane half-diagonal glides
form so-called type-1 antiphase domain walls that are
measured by the large axis of the ellipse-shaped reflections
while higher energy type-2 domain walls are formed by
out-of-plane half-diagonal glides and are measured by the
small axis of the ellipse. Following a temperature quench,
droplets of the ordered phase in any of the four allowed
ground states appear and grow in a matrix of disordered
phase. Eventually the domains meet and the system is
composed of ordered domains in different ground states
separated by antiphase domain walls. At this point the
coarsening regime begins and the growth of the average
domain size is well described by a R�t� / t1=2 scaling law.
Earlier studies of this process used time-resolved x-ray
scattering to probe both the early nucleation and growth
[10] and the coarsening [8] regimes.
1-1  2005 The American Physical Society



0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

dq*t1/2 [A−1s1/2] 

I/I
m

ax

o

10.0 100.020. 200.50.

100.0

200.

50.

360oC (r0=8.3, r1=7.3)

370oC (r0=5.4, r1=8.7)

t (min)

R
−

r 0
 (

A
)

o

FIG. 2 (color online). Rescaled intensity vs rescaled radial
position at five different times, and the scaled SG estimate for
the incoherent scattering (solid line). The inset shows fits for the
characteristic domain size (1=FWHM) with the form R � r0 �
r1t

1=2.
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The experiments were performed using partially coher-
ent x rays at beam line 8-ID of the Advanced Photon
Source. A thin diamond crystal monochromator is used
to produce 7.66 keV x rays having a relative bandwidth

�=� � 6:2
 10�5 and a flux of �5
 1012 photons per
second for a storage ring current of 100 mA. A transversely
coherent beam was produced using slits with highly pol-
ished edges set to a horizontal aperture of 5 �m and a
vertical aperture of 10 �m. The scattered x rays around the
[100] superlattice reflection of a Cu3Au single crystal were
recorded by a area direct-detection charge-coupled device
(CCD) with 22 �m square pixels located 1.20 m from the
sample.

The sample vacuum furnace consists of a pyrolytic-
graphite heater mounted on a water-cooled Cu heat sink.
This arrangement gives sufficient cooling power to achieve
cooling rates of about 1 	C=s as measured by a thermo-
couple mounted on the sample surface. Fast temperature
quenches without any significant undershooting were per-
formed using a temperature controller that combines
proportional-integral-derivative feedback, thermal model-
ing (feedforward), and Kalman filtering of the temperature
readings [11]. In a typical experiment, the sample was held
at �425 	C and rapidly quenched (within 1 min) to a
temperature below Tc, where it was held for a few hours.

The speckled aspect of the diffraction pattern is a con-
sequence of the coherent illumination of the sample. A
normalized intensity fluctuation can be defined as

D�q; t� �
I�q; t� � hI�q; t�i

hI�q; t�i
: (1)

The main problem associated with performing XIFS mea-
surements in nonequilibrium systems comes with the need
to evaluate the average scattered intensity hI�q; t�i, which
measures the ensemble averaged structure factor that
would be obtained from incoherent x-ray diffraction. In
an equilibrium system hI�q; t�i is expected to be constant in
time and can be evaluated simply by averaging I�q; t� over
a long enough time interval. However, in a nonequilibrium
system hI�q; t�i changes with time and separating the in-
tensity fluctuations from this changing average is a non-
trivial issue.

In isotropic systems, hI�q; t�i can be evaluated by aver-
aging over intensities at constant q [5,6]. For our particular
system, this approach is not possible because of the an-
isotropy of the superlattice reflections in Cu3Au. The
incoherent (average) scattered intensity hI�q; t�i could
also be evaluated by least-squares fitting various analytical
forms for I�q; t� to the measured intensities. Fits with 2D
Gaussian functions, with forms resulting from a
Hendricks-Teller model for the scattering from Cu3Au
[10] or with squared Lorentzian functions work generally
well but, as for any least-squares fits, some regions are
affected by small systematic errors. The systematic errors
can significantly affect the measured fluctuations, espe-
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cially at high q levels where the scattered intensity is
low, artificially increasing the fluctuation correlation func-
tions. In order to take full advantage of the whole q range
allowed by the CCD detector, the average structure factor
hI�q; t�i was calculated by using a two-dimensional
Sawitzky-Golay (SG) smoothing filter [12].

The scaling behavior of the average structure factor is
shown in Fig. 2. The normalized intensity I

Imax
follows a

universal curve if plotted against a scaled position dqt1=2

(here, dq measures the distance from the peak center in the
radial direction), which means that properties of the system
scale with a single characteristic domain size R and that
this length grows as t1=2. However, this scaling behavior is
not temperature independent. The inset in Fig. 2 shows the
average domain size, calculated as the inverse of the
FWHM of the Bragg peaks, as a function of time for two
different temperatures. The coarsening of the antiphase
domains are driven by the reduction of the surface energy
associated with the domain walls. The temperature depen-
dence is the result of the competition between a higher free
energy difference for a deeper quench and a reduced
diffusion constant due to the lower temperature. In the
360–375 	C temperature range, the process is diffusion
limited. The growth rate is slower for deeper quenches.

With hI�q; t�i evaluated by the SG smoothing filter, the
intensity fluctuations can be calculated from Eq. (1). The
two-time correlation function is defined as the covariance
1-2
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of the scattered intensity:

C�q; t1; t2� � hD�q; t1�D�q; t2�iequivalent q: (2)

The averages were calculated over small areas of 10

10 pixels, considered to map all into the same q. Contour
plots of the two-time correlation functions for two values
of q in the radial direction and two different temperatures
are shown in Fig. 3. Following the analysis of [3,4] the two-
time correlation functions are expressed in terms of a
natural set of variables, the average time t � �t1 � t2�=2
and the time difference �t � jt1 � t2j. A constant value of
t corresponds to a line perpendicular to the t1 � t2 diago-
nal and �t measures the distance from the equal-time
diagonal (in units of time) along such a line. A correlation
time � can be defined as the time difference �t, for which
the correlation function decreases to 1=2 of its equal-time
value. The correlation functions along the t1 � t2 diagonal
measure the coherence of the beam but also contain a term
from the Poisson noise in photon counting which affects
their values. As a consequence, only the nondiagonal, t1 �

t2, elements were used by the fitting routines described
below.

The large t asymptotic limit of the normalized correla-
tion function can be obtained in an explicit form [3]. For a
three-dimensional system, the predicted form is

Cnorm�z� � �z2K2�z�=2�
2: (3)
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FIG. 3 (color online). Two-time correlation functions,
C�q; t1; t2�, calculated for q1 � �1:002; 0:000; 0�, q2 �
�1:003; 0:001; 0�, T1 � 370 	C, and T2 � 375 	C. Contour levels
are 0.001, 0.002, 0.004, 0.008, and 0.016. The black contour
corresponds to a level of 0.004 which is half the coherence factor
� ’ 0:008.
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The scaling variable is z � A�t=t1=2, where A makes the
variable dimensionless and K2�z� is a modified Bessel
function of the second kind. Fits of the two-time correla-
tion functions were done using an approximation for
Eq. (3) given in [6]. The results for the 360 	C temperature
quench are shown in Fig. 4.

The scaling behavior of the two-time correlation func-
tions is shown in Fig. 5. As predicted in [3], the rescaled
correlation times dq2� plotted against the rescaled average
time dq2t obey a scaling law with asymptotic limits �t in
the low t limit and �t1=2 in the high t limit. In order to
make this scaling form work, the time origin was shifted by
some temperature-dependent amount t0, marked by the
white dots in two-time correlation plots (Fig. 3). At earlier
times the two-time correlations are zero, or smaller than
the resolution (of the order of 1–3 min). These rather large
‘‘incubation times’’ for the two-time scaling behavior are a
new and an intriguing piece of evidence that poses more
experimental and theoretical challenges in the study of the
early-time behavior of the order-disorder phase transition
in Cu3Au. Our detailed analysis of the ‘‘one-time’’ struc-
ture factor hI�q; t�i [13] shows a small shift in the Bragg
peak center and a subtle change in the aspect ratio of the
[100] superstructure peak happening during the early
stages of the ordering process, for times comparable to
t0. The different behavior of the two-time correlation
functions during the same time interval is probably a
consequence of this and reflects a more subtle relaxation
mechanism, involving some difference between the two
types of antiphase domain walls.

With the appropriate choice of time origin, t0, the scal-
ing form in Eq. (3) becomes temperature independent. The
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FIG. 4 (color online). Least-squares fits of the two-time corre-
lation functions.
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FIG. 5. Rescaled, fitted correlation times for all q values along
a radial scan. The dotted line has slope 1 and the dashed line has
slope 1=2. The nonscaled correlation times for some values of q
are shown in the inset.
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temperature dependence comes only through the character-
istic time t0 and is qualitatively different from the tem-
perature dependence of the one-time quantities. The
characteristic time t0 is longest (t0 � 50 min) for the shal-
lowest quench (375 	C) and reaches a plateau for tempera-
tures ranging from 360–370 	C (t0 � 28–30 min). Like the
temperature dependence of the one-time quantities, this is
due to the competition between an increased thermody-
namic driving force for structural relaxation caused by a
deeper quench and a reduced atomic mobility at lower
temperatures. The difference comes perhaps from the fact
that the predominant thermodynamic force for domain
growth in the coarsening regime is the surface free energy
reduction, while the density-density fluctuations measured
by the two-time functions are driven by the reduction of
both bulk and surface free energy.

The nature of the fluctuations about the average scaling
behavior are quite different from equilibrium fluctuations.
Models for growth in ordering systems show that large
domains grow at the expense of small domains. This
behavior is nicely captured by the two-time correlation
05550
functions and in the scaling which shows that fluctuation
correlation time grows with time. Cu3Au was chosen be-
cause it represents a model system in which dynamical
scaling for the average domain size works well. It will be
most interesting to measure the two-time correlation func-
tion in a broader range of nonequilibrium systems.

In conclusion, most previous work on dynamical scaling
was based on measurements of the average behavior. Our
results emphasize that fluctutations about the average be-
havior also follow dynamical scaling. These are the first
experimental confirmation of scaling of two-time correla-
tion functions in a first-order phase transition with the
nonconserved order parameter (model A).

Use of the Advanced Photon Source was supported by
the DOE under Contract No. W-31-109-Eng-38. E. M. D.
was supported by DOE Grant No. DE-FG02-03ER46023.
1-4
*Present address: ID10 (Troı̈ka), ESRF, Grenoble, France.
Electronic address: fluerasu@esrf.fr

[1] For an extensive review, see J. D. Gunton, M. San Miguel,
and P. S. Sahni, in Phase Transitions and Critical
Phenomena, edited by C. Domb and J. L. Lebowitz
(Academic, London, 1983), Vol. 8.

[2] S. Brauer et al., Phys. Rev. Lett. 74, 2010 (1995); L. B.
Lurio et al., Phys. Rev. Lett. 84, 785 (2000); E. M.
Dufresne et al., Phys. Rev. E 65, 061507 (2002).

[3] G. Brown, P. A. Rikvold, M. Sutton, and M. Grant, Phys.
Rev. E 56, 6601 (1997).

[4] G. Brown, P. A. Rikvold, M. Sutton, and M. Grant, Phys.
Rev. E 60, 5151 (1999).

[5] A. Malik et al., Phys. Rev. Lett. 81, 5832 (1998).
[6] F. Livet et al., Phys. Rev. E 63, 036108 (2001).
[7] B. Warren, X-Ray Diffraction (Addison-Wesley, Reading,

MA, 1969), Chap. 12, pp. 206–250.
[8] R. F. Shannon, S. E. Nagler, C. R. Harkless, and R. M.

Nicklow, Phys. Rev. B 46, 40 (1992).
[9] Z.-W. Lai, Phys. Rev. B 41, 9239 (1990).

[10] K. F. Ludwig et al., Phys. Rev. Lett. 61, 1859 (1988).
[11] Andrei Fluerasu and Mark Sutton, in Temperature: Its

Measurement and Control in Science and Industry;
Volume Seven, edited by Dean C. Ripple, AIP Conf.
Proc. No. 684 (AIP, New York, 2003), p. 933.

[12] W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P.
Flannery, Numerical Recipes in C (Cambridge University
Press, Cambridge, 1992), 2nd ed., Chap. 14.

[13] Andrei Fluerasu, Ph.D. thesis, McGill University,
2003, http://www.physics.mcgill.ca/~fluerasu/research/
these.pdf.


